QFT II exercises - sheet 0

Exercise 1

a Show, assuming $a \neq a(x)$ and $J \neq J(x)$ that

$$
\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} a x^{2}+J x}=\sqrt{\frac{2 \pi}{a}} e^{\frac{J^{2}}{2 a}}
$$

b Show, assuming $A \neq A(x)$ and $J \neq J(x)$ and with summation convention as well as a suitable constraint on the matrix A that $\mathrm{Z}[\mathrm{J}]:=$

$$
\int_{-\infty}^{\infty} d x_{1} \ldots d x_{n} e^{-\frac{1}{2}\left(x_{i} A_{i j} x_{j}\right)+J_{i} x_{i}}=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det}(A)}} e^{\frac{1}{2} J_{i} J_{j}\left(A^{-1}\right)_{i j}}
$$

Hint: Diagonalize A.
c Compute

$$
\frac{1}{Z[0]} \frac{\partial^{4} Z[J]}{\partial J_{i} \partial J_{j} \partial J_{k} \partial J_{l}}\left\lfloor{ }_{J=0}=\int_{-\infty}^{\infty} d x_{1} \ldots d x_{n} x_{i} x_{j} x_{k} x_{l} e^{-\frac{1}{2}\left(x^{T} A x\right)}\right.
$$

d Formulate a simple 'Feynman rule' which reproduce the result of c).

Exercise 2

A one dimensional harmonic oscillator with external force $\mathrm{J}(\mathrm{t})$ is described by the Lagrangian

$$
L=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} \omega x^{2}+J x
$$

a Give the action in the form

$$
S=\int d t\left[\frac{1}{2} x A x+J x\right]
$$

and determine the differential operator A, assuming surface terms vanish
b The Green's function $G\left(t-t^{\prime}\right)$ of this operator satisfies

$$
A(t) G\left(t-t^{\prime}\right)=\delta\left(t-t^{\prime}\right)
$$

Show

$$
S=\int d t\left[\frac{1}{2} x^{\prime} A x^{\prime}-\frac{1}{2} \int d t^{\prime} J(t) G\left(t-t^{\prime}\right) J\left(t^{\prime}\right)\right]
$$

for a suitably shifted $x^{\prime}=x+X$. Hint: X must be linear in J and involve an integral
c Give the Fourier representation of $G\left(t-t^{\prime}\right)$

Exercise 3

The action for a gauge boson A_{μ} is given by

$$
S=-\frac{1}{4} \int d^{4} x F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

a By using partial integration write the action in the form

$$
S=\frac{1}{2} \int d^{4} x A_{\mu} D^{\mu \nu} A_{\nu}
$$

and determine the differential operator $D^{\mu \nu}$
b By using the Ansatz $A_{\mu}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} \tilde{A}_{\mu} e^{-\mathrm{i} k \cdot x}$ show that the action if Fourier space takes the form

$$
S=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \tilde{A}_{\mu}(k) \tilde{D}^{\mu \nu} \tilde{A}_{\nu}(-k)
$$

and compute $\tilde{D}^{\mu \nu}(k)$.
c The Greens function $G_{\nu \rho}(x-y)$ of $D^{\mu \nu}$ is defined by

$$
\begin{equation*}
D^{\mu \nu} G_{\nu \rho}(x-y)=i \delta^{\mu}{ }_{\rho} \delta(x-y) \tag{1}
\end{equation*}
$$

Show that $G_{\nu \rho}(x-y)$ is ill defined by acting with ∂_{μ} on equation (1)
d By using the Ansatz $G_{\nu \rho}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \tilde{G}_{\nu \rho} e^{\mathrm{i} k(x-y)}$ determine the analog of equation (1) for $\tilde{G}_{\nu \rho}$. How does the problem of c) show up in this equation?
e Add to the action S a term

$$
\delta S=-\frac{1}{2 \xi} \int d^{4} x\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

and recompute $D^{\mu \nu}$ and $\tilde{D}^{\mu \nu}$. Is the problem of c) still there?
f Determine $\tilde{G}_{\nu \rho}$ with the help of the Ansatz

$$
\tilde{G}_{\nu \rho}=a\left(k^{2}\right) \eta_{\nu \rho}+b\left(k^{2}\right) k_{\nu} k_{\rho}
$$

and compute a and b.
g BONUS: instead of e), take

$$
\delta S=-\frac{1}{2} \int d^{4} x\left(q_{\mu} A^{\mu}\right)^{2}
$$

for some light-like vector $q\left(q^{2}=0\right)$. Determine $\tilde{G}_{\nu \rho}$ with the help of the Ansatz

$$
\tilde{G}_{\nu \rho}=a\left(k^{2}\right) \eta_{\nu \rho}+b\left(k^{2}\right)\left(q_{\nu} k_{\rho}+q_{\rho} k_{\nu}\right)
$$

